2born (2born) wrote,

Продвинутая механика для элементарных целей

Забавная статья для Am.J.Phys. Автор предлагает строить численные схемы для интегрирования уравнений движения не на основе разложений в ряд Тейлора, а на основе гамильнонова метода, скобок Пуассона и т.п. На самом деле, мне подобные подходы встречались в квантовой механике, даже использовал что-то похожее.

Elementary algorithms from advanced mechanics: http://arxiv.org/abs/1607.03882

Most elementary numerical schemes found useful for solving classical trajectory problems are canonical transformations. This fact should be make more widely known among teachers of computational physics and Hamiltonian mechanics. It is very surprising that in order to solve a simple second-order differential equation, one has to invoke the deepest part, the Poissonian formulation, of classical mechanics. From the perspective of advanced mechanics, there are no bewildering number of seemingly arbitrary elementary schemes based on Taylor's expansion. There are only two canonical second-order algorithms, on the basis of which one can build numerical schemes of any order.
Tags: Мегаучебник или Что я читал и похвалил, наука, разгребая arXiv'ы

  • Post a new comment


    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.