The quantum mechanics correspondence principle for spin systems and its application for some magnetic resonance problems: http://arxiv.org/abs/1507.03043
Victor Henner, Andrey Klots, Tatyana Belozerova
Problems of interacting quantum magnetic moments become exponentially complex with increasing number of particles. As a result, classical equations are often used but the validity of reduction of a quantum problem to a classical problem should be justified. In this paper we formulate the correspondence principle, which shows that the classical equations of motion for a system of dipole interacting spins have identical form with the quantum equations. The classical simulations based on the correspondence principle for spin systems provide a practical tool to study different macroscopic spin physics phenomena. Three classical magnetic resonance problems in solids are considered as examples - free induction decay (FID), spin echo and the Pake doublet.