## October 30th, 2020

### Поползень в сосновом лесу

Место действия:

По пятницам принято постить котиков, но посмотрите, разве он не котёночек?

)

### Симпатичная статейка от Зураба Силагадзе

Используется т.наз. метод спиральных амплитуд (надо бы разобраться, что это такое!).

MUMUG: a fast Monte Carlo generator for the process e+e−→μ+μ−γ: https://arxiv.org/abs/2010.15553
A fast leading-order Monte Carlo generator for the process e+e−→μ+μ−γ is described. Matrix elements are calculated using the helicity amplitude method. Monte Carlo algorithm uses the acceptance-rejection method with an appropriately chosen simplified distribution that can be generated using an efficient algorithm. We provide a detailed pedagogical exposition of both the helicity amplitude method and the Monte Carlo technique, which we hope will be useful for high energy physics students.
Comments: 27 pages, uses jheppub package and FEYNMAN.tex file for drawing Feynman diagrams

### Как учат квантовой механике индонезийцев?

ИМХО, тривиально, но пусть будет.

How do I introduce Schrödinger equation during the quantum mechanics course?: https://arxiv.org/abs/2010.15589
T. Mart
In this paper I explain how I usually introduce the Schrödinger equation during the quantum mechanics course. My preferred method is the chronological one. Since the Schrödinger equation belongs to a special case of wave equations I start the course with introducing the wave equation. The Schrödinger equation is derived with the help of the two quantum concepts introduced by Max Planck, Einstein, and de Broglie, i.e., the energy of a photon E=ℏω and the wavelength of the de Broglie wave λ=h/p. Finally, the difference between the classical wave equation and the quantum Schrödinger one is explained in order to help the students to grasp the meaning of quantum wavefunction Ψ(r,t). A comparison of the present method to the approaches given by the authors of quantum mechanics textbooks as well as that of the original Nuffield A level is presented. It is found that the present approach is different from those given by these authors, except by Weinberg or Dicke and Wittke. However, the approach is in line with the original Nuffield A level one.
Comments: 10 pages, 2 figures, submitted to Physics Education

### Изогни его, как темная материя!

Если хорошая книга или статья должна возбуждать сразу много душевных струн, то эта - просто идальная! Тут тебе и робот Бендер сразу вспоминается, и предлагается сделать оптические призмочки (которые авторы почему-то упорно называют линзами) из желе, обсуждается влияние сахара на показатель преломления, предлагается не забыть ароматизаторы и сделать НЯМ! :))

Уважаемый Сергей Попов помечает такие посты тегом funny papers :))

Bend it like dark matter!: https://arxiv.org/abs/2010.14826
Julia Woithe, Magdalena Kersting
Dark matter is one of the most intriguing scientific mysteries of our time and offers exciting instructional opportunities for physics education in high schools. The topic is likely to engage and motivate students in the classroom and allows addressing open questions of the Standard Model of particle physics. Although the empirical evidence of dark matter links nicely to many standard topics of physics curricula, teachers may find it challenging to introduce the topic in their classrooms. In this article, we present a fun new approach to teach about dark matter using jelly lenses as an instructional analogy of gravitational lenses. We provide a brief overview of the history of dark matter to contextualise our presentation and discuss the instructional potential as well as limitations of the jelly lens analogy.
Comments: 17 pages, 4 figures