June 4th, 2019

лошадь, диаграмма, Фейнман

Пособие для начинающих по работе с астрономическими данными

Может, нужно кому...

A Beginner's Guide to Working with Astronomical Data: https://arxiv.org/abs/1905.13189

his elementary review covers the basics of working with astronomical data, notably with images, spectra and higher-level (catalog) data. The basic concepts and tools are presented using both application software (DS9 and TOPCAT) and Python. The level of presentation is suitable for undergraduate students, but should also be accessible to advanced high school students.

143 pages, 109 figures

Кстати, спасибо Сергею Попову sergepolar за напоминание, а то я видел эту штуку, да забыл написать в жж! Процитирую, что он пишет в своем обзоре:

Это и в самом деле отличное учебное пособие. Очень понятное введение для тех, кто только начинает работать с астрономическими данными. По верхам описана работа с несколькими архивами данных и программами их обработки. Это не исчерпывающий мануал (даже близко), но хороший стартовый пункт.

Существенно, что даже тот, кто никогда с данными не работал и ни разу не астроном, все равно может, пользуясь этим руководством интересно поиграться с кучей публично доступных данных, включая хаббловские.
лошадь, диаграмма, Фейнман

Визуализация диагонализации гамильтониана и самодельный спектрограф - сразу две интересные статьи...

... в разделе "Physics Education".

Quantum matrix diagonalization visualized: https://arxiv.org/abs/1905.13269

We show how to visualize the process of diagonalizing the Hamiltonian matrix to find the energy eigenvalues and eigenvectors of a generic one-dimensional quantum system. Starting in the familiar sine-wave basis of an embedding infinite square well, we display the Hamiltonian matrix graphically with the basis functions alongside. Each step in the diagonalization process consists of selecting a nonzero off-diagonal matrix element, then rotating the two corresponding basis vectors in their own subspace until this element is zero. We provide Mathematica code to display the effects of these rotations on both the matrix and the basis functions. As an electronic supplement we also provide a JavaScript web app to interactively carry out this process.

6 pages, 2 figures. Submitted to the American Journal of Physics

A Do-it-yourself Spectrograph Kit for Educational Outreach in Optics and Photonics: https://arxiv.org/abs/1905.13242

We designed and built a do-it-yourself spectrograph assembly to demonstrate the concept of spectroscopy, an indispensable tool for exploring the cosmos. This spectrograph is designed for optical band (400-750 nm). It uses a transmission grating to disperse the light and a webcam to measure the spectrum. This spectrograph provides a resolving power (λ/δλ) of about 1000. This demonstration involves off-the-shelf materials costing less than $500, thus making it an easy to build demonstration kit for a school or public setting. The kit is well-suited for performing various science experiments and acquiring hands-on experience for students to learn the concepts such as coherence, spectral orders, resolving power, absorption and emission spectra. All of these concepts are an integral part of modern astronomical observations as well as various other fields in STEM such as biomedical engineering, chemical analysis, food and water quality, etc. This kit is portable and fully modular, making it apt for outreach purposes.

7 pages, 7 figures. Manuscript presented at SPIE Optics and Photonics 2018, San Diego, California