The negatively charged nitrogen-vacancy (NV−) center in diamond is a model quantum system for university teaching labs due to its room-temperature compatibility and cost-effective operation. Based on the low-cost experimental setup that we have developed and described for the coherent control of the electronic spin (Sewani et al.), we introduce and explain here a number of more advanced experiments that probe the electron-nuclear interaction between the \nv electronic and the \NN~and \CC~nuclear spins. Optically-detected magnetic resonance (ODMR), Rabi oscillations, Ramsey fringe experiments, and Hahn echo sequences are implemented to demonstrate how the nuclear spins interact with the electron spins. Most experiments only require 15 minutes of measurement time and can, therefore, be completed within one teaching lab.
Comments: extension of the teaching lab experiments described in Sewani et al., Coherent control of NV centers in diamond in a quantum teaching lab. American Journal of Physics 88, 1156 (2020).