2born (2born) wrote,

Хорошее сравнение численных методов,

в том числе спектральных (тот самый Денис Дутых, который мне уже как-то попадался):

On the comparison of three numerical methods applied to building simulation: finite-differences, RC circuit approximation and a spectral method: https://arxiv.org/abs/1905.13035

Predictions of physical phenomena in buildings are carried out by using physical models formulated as a mathematical problem and solved by means of numerical methods, aiming at evaluating, for instance, the building thermal or hygrothermal performance by calculating distributions and fluxes of heat and moisture transfer. Therefore, the choice of the numerical method is crucial since it is a compromise among (i) the solution accuracy, (ii) the computational cost to obtain the solution and (iii) the complexity of the method implementation. An efficient numerical method enables to compute an accurate solution with a minimum computational run time (CPU). On that account, this article brings an investigation on the performance of three numerical methods. The first one is the standard and widely used finite-difference approach, while the second one is the so-called RC approach, which is a particular method brought to the building physics area by means of an analogy of electric circuits. The third numerical method is the spectral one, which has been recently proposed to solve nonlinear diffusive problems in building physics. The three methods are evaluated in terms of accuracy on the assessment of the dependent variable (temperature or vapor pressure) or of density of fluxes for three different cases: i) heat diffusion through a concrete slab, ii) moisture diffusion through an aerated concrete slab and iii) heat diffusion using measured temperatures as boundary conditions. Results highlight the spectral approach as the most accurate method. The RC based model with a few number of resistances does not provide accurate results for temperature and vapor pressure distributions neither to flux densities nor conduction loads.

35 pages, 19 figures, 2 tables, 42 references. Other author's papers can be downloaded at this http URL
Tags: matlab, Мегаучебник или Что я читал и похвалил, наука, разгребая arXiv'ы, техника

  • Post a new comment


    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.