The Arduino platform is widely used in education of physics to perform a number of different measurements. Teachers and students can build their own instruments using various sensors, the analogue-to-digital converter of the Arduino board and code to calculate and display the result. In several cases this can mean incautious reproduction of what can be found on the Internet and an in-depth understanding can be missing. Here we thoroughly analyse a frequently used resistance measurement method and show demonstration experiments as well to make it clear.
Universal Arduino-based experimenting system to support teaching of natural sciences: https://arxiv.org/abs/1901.03810
The rapid evolution of intelligent electronic devices makes information technology, computer science and electronics strongly related to the teaching of natural sciences. Today almost everybody has a smart phone that can convert light, temperature, movement, sound to numbers, therefore all these can be processed, analysed, displayed, stored, shared by software applications. The fundamental question is how education can follow this knowledge and how can education take its advantages. Components and methods of modern technology are available for education also, teachers and students can play with parts and tools which were previously used only by engineers. A good example is the very popular Arduino board which is practically an industrial microcontroller whose pins are wired to easy-to-use connectors on a printed circuit board. In this paper we show a universal system which we have developed for the Arduino platform to support experimenting and understanding of the most fundamental principles of the operation of modern devices. We show our related educational concept and discuss the most important features of the system. Open source hardware and software are available and we provide a number of video tutorials as well.